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Abstract. With the significant increase in the adoption of cloud computing, mod-
eling and predicting the performance of the applications executing in clouds have
gained interests from cloud researchers and users. However, shared resource con-
tention caused by multi-tenancy makes the performance modeling and prediction
a challenging task. In this paper, we designed and evaluated a comprehensive set
of micro-benchmarks to probe and profile the impacts of contention of key re-
sources. Various machine-learning models have been exploited to model and pre-
dict cloud application performance with the profiling information of these micro-
benchmarks. The results of our extensive experiments showed that the micro-
benchmarks can effectively probe the contention levels of the resources, enabling
accurate performance prediction models for cloud applications with only 6.8%
error on average. Moreover, to reduce profiling overhead, the results showed that
the duration of 0.4 seconds execution for each micro-benchmark can achieve rel-
atively accurate prediction even with only the CPU micro-benchmark.

Keywords: Machine Learning, Deep Learning, Cloud Computing, Micro-benchmarks,
Performance Modeling

1 Introduction

The adoption of cloud computing by many organizations necessitates the performance
prediction of cloud applications [2, 26]. Accurate performance predictions can help
cloud users (e.g. organizations) to make insightful decisions in choosing the proper
types of Virtual Machines (VM), design better auto-scaling/scheduling policies and
choose the more-suitable cloud provider [6, 25, 27]. However, predicting the perfor-
mance of cloud applications is a challenging task due to the interference (i.e., resource
contention) introduced to the system by other cloud tenants. The difficulty is mainly
due to the high variation of this interference, which fluctuates with the VMs (and their
running applications) co-located in the same physical server. As shown in prior work, a
VM and its application may experience different levels of performance degradation de-
pending on the severity of the contention in various resources, including CPU, Memory
bandwidth/latency, I/O, L1, L2 and L3 cache [11].

A cloud application’s performance degradation varies considerably depending on
the severity of the contention. To accurately model and predict the cloud application
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performance under resource contention, reliable profiling of the severity of the con-
tention in different resources is required. Yet, architecture-level profiling from the read-
ings of hardware performance monitoring units (PMU), which was extensively used in
prior work [11, 21], is not accessible by ordinary cloud users. Additionally, OS-level
resource utilization, such as CPU utilization and memory usage, cannot provide reliable
profiling of this contention.

To address this problem, we proposed to employ micro-benchmarks to profile the
severity of the resource contention. Several prior studies have used micro-benchmarks
to estimate the performance of certain resources in the cloud, such as the CPU speed
and storage bandwidth [5, 28]. In [28], Leitner et al. used a set of 23 micro-benchmarks
to model the performance of only two cloud running applications on different instances.
Likewise, Baughman et al. used actual application executions with different input data
sizes to build the performance model of an application [5]. Here, both studies only
used the micro-benchmarks to profile the average performance of a particular hardware
resource, instead of the contention severity of the resource at run-time. However, to
enable more efficient resource management and job scheduling, it may be necessary to
predict the performance of a cloud application at the run-time by considering the in-situ
severity of resource contention.

Given that the above studies focused on the average performance of cloud resources,
they were unsuitable to predict the run-time performance of a cloud applications. In our
previous works [22, 23, 24], to address the existing limitation, we have designed frame-
works to model and predict the in-situ performance of cloud applications. To collect
contention information and corresponding application’s performance, the frameworks
run three specifically devised micro-benchmarks (CPU, memory, and disk I/O) followed
by the actual execution of the application. Then collected contention information and
corresponding in-place performance of the application is used for offline or online per-
formance modeling and prediction. Note that studied frameworks have not analyzed the
effects of different profiling durations and different micro-benchmarks as feature sets,
which is essential to minimize the run-time overhead of profiling and to evaluate the
corresponding prediction accuracy.

Therefore, in this paper, we exploited our recently studied uPredict framework to
accurately model any correlation between the source and intensity of contention and
application’s performance [22]. Moreover, a thorough investigation has been con-
ducted to evaluate the impacts of the source of contention and profiling duration on
model’s prediction accuracy. We designed and implemented a comprehensive set of
micro-benchmarks based on the lmBench3 open-source benchmark suite [20] to probe
and profile the resource contention experienced by a given VM in multi-tenant cloud
environment. With the profiled information from such micro-benchmarks, various per-
formance prediction models for cloud applications could be built, as illustrated in our
previous studies [22, 23, 24]. For different sources of contention in various resources
in a target VM, we developed seven micro-benchmarks to probe CPU, Memory La-
tency/Bandwidth, L1, L2, and L3 cache. Following the same principle in the uPredict
framework, the developed micro-benchmarks were evaluated on their effects on the pre-
diction accuracy of different prediction models. Specifically, we considered both a pri-
vate and the Chameleon clouds [8] in our experiments. Moreover, nine benchmark ap-
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plications from PARSEC [3], NAS Parallel Benchmarks (NPB) [4] and CloudSuite [13]
were employed. For prediction models, we considered various machine learning tech-
niques, including Support Vector Regression (SVR), Lasso Regression, and Neural Net-
work (NN) [14, 15, 31].

Our experiment results showed that the profiling information from the micro-benchmarks
can lead to quite accurate performance prediction models. In particular, with feed-
forward neural networks, the prediction error of the considered models was only 6.8%
on average when all micro-benchmarks with each running for the longest profiling du-
ration (i.e., 3 seconds) were considered. With the objective of reducing profiling over-
head, we also evaluated the effects of profile duration of micro-benchmarks as well
as different subsets of micro-benchmarks, where the results showed that the duration
of 0.4 seconds for each micro-benchmark is good enough to achieve accurate perfor-
mance prediction. In addition, when the micro-benchmark that probes CPU resources
is utilized as the only feature, the prediction errors increase only slightly to 8.5% on
average. The main contributions of this work include:

1. The design and implementation of a comprehensive set of micro-benchmarks to
probe the severity of the resource contention in the clouds for various types of
resources, including the CPU, Memory bandwidth/latency, I/O, L1, L2 and L3
caches.

2. By considering various machine learning based performance prediction models,
extensive experiments have been conducted for representative benchmark applica-
tions running on both a private and Chameleon clouds to evaluate the effects of
different aspects of micro-benchmarks (including profiling duration and subsets of
features) on the prediction accuracy.

3. With the objective of reducing profiling overhead, our evaluation results indicated
that the profiling duration of 0.4 seconds per micro-benchmark could lead to quite
accurate prediction results, which is inline with the existing results regarding to
the minimal profiling duration. Moreover, the best subset of features from micro-
benchmarks was also identified.

The rest of this paper is organised as follows. Section 2 presents the closely related
works on performance modeling and prediction of cloud applications. Detailed imple-
mentations of micro-benchmarks, feature selection, and profiling duration are discussed
in Section 3. Section 4 discusses the experimental setup and evaluation results. Finally,
Section 5 concludes the paper.

2 Related Works

To avoid long tail latencies and improve the quality of resource provisioning on the
cloud many researches have investigated modeling and prediction of the incoming re-
quests to cloud providers for better collocation [9, 19, 36]. In [36], Yu et al. use Neural
Networks (NN) and existing pool of tasks to cluster workloads and learn the common
features among them. Later, for any submitted job, its initial workload patterns and pa-
rameters can be used in conjunction with an existing NN model to find an appropriated
cluster that the job belong to. This predicted information about the job characteristics
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will be used to make scheduling decisions that prevent later overhead of migrating or
scaling up the instance. However, a pool of incoming requests with known workloads’
characteristics are required for these category of researches which may not always ac-
cessible, since users not always disclose the detail of their running workload.

Another category of researches have focused on the application specific perfor-
mance modeling (ex. Hadoop and Spark workloads) of cloud running applications [7,
33, 34]. These researches leverage the existing additional information about the job
execution in the framework. In [34], authors used Directed Acyclic Graph (DAG) infor-
mation of a spark task for performance modeling and prediction, or in [33] sequential
stages in spark job execution have been used as a progress indicator for modeling and
predictions. Although these approaches were successful, additional information about
task execution does not always exist for all cloud running applications which make it
impossible to adopt.

Several studies have considered micro-benchmarks for performance modeling and
prediction of cloud applications [5, 28, 35]. Although these are the closest researches
to our approach, they are all focused on predicting the average performance of the
applications running on different types of instances. Therefore, these studies were not
designed for, and thus could not be used to, determine the run-time performance of
a cloud application. Such run-time performance information can usually benefit cloud
task/request scheduling algorithms. Additionally, these studies lacked in-depth analysis
on how to reduce the profiling overhead, including profiling duration and the subset of
feature (i.e., required micro-benchmarks).

3 Performance Profiling with Micro-Benchmarks

Micro-benchmarking for performance evaluation in an isolated environment have a
long history and is considered a foundational tool [18, 30, 32]. However, using micro-
benchmarks in the cloud environments has its own complexities to adopt due to hard-
ware sharing among multiple cloud tenants. Hardware sharing will result in multiple
VMs competing for the same resources which will slowdown the executions, and any
changes in the collocated VMs or their running applications will greatly impact the per-
formance of other cloud tenants. Moreover, each cloud running application has its own
sensitivity to the intensity of the interference introduced to the system by other cloud
tenant. Such sensitivity of applications can be modeled through machine learning algo-
rithms and be used for performance predictions of future executions. Yet, the effect of
source and intensity of interference, profiling duration of the micro-benchmarks, and
machine learning algorithm on prediction accuracy needs to be thoroughly evaluated.

Given that the key resources that affect single-VM cloud applications are CPU,
memory and disks (i.e., I/O operations), we designed and implemented a comprehensive
set of micro-benchmarks based on the lmBench3 open-source benchmark suite [20]. We
would like to point out that, although there are many micro-benchmarks have been stud-
ied [5, 28], none of them exactly fits our needs to perform in-situ profiling of contention
of a given resource. In what follows we will first explain the detailed micro-benchmarks
design, followed with discussions on profiling duration, feature sets, and machine learn-
ing models.
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3.1 Micro-benchmarks

CPUs: To evaluate the contention level of available CPUs, a multi-threaded micro-
benchmark is implemented. Number of thread are equal to the number available CPUs,
and each thread in the micro-benchmark will increment an in-register counter for a
specific predefined duration. Here, an in-register counter will ensure that the micro-
benchmark execution is heavily depend on the number of CPU cycles allocated to the
VM. At the end of execution the sum of counter values for all the threads will be consid-
ered as an overall progress of the micro-benchmark (ccpu). Any increase in the counter
value indicated more CPU cycles dedicate to the VM, and decrease in the counter can be
translated to increase in the contention level and decrease in the dedicated CPU cycles.

Cache: Similarly, three micro-benchmarks are implemented with each micro-benchmark
evaluating the L1, L2 and L3 cache contention level. These three multi-threaded micro-
benchmarks each will access an array of size 256KB, 2MB and 20MB respectively, with
the stride size of 128. The number of accesses for each micro-benchmark will be con-
sidered as a progress indicator (cl1, cl2, and cl3). Fast progress can be inspected with the
increase in number of accesses in a fix period of time, and vice versa. The sizes of the
arrays are devised with consideration of cache sizes of each cache level per thread, so
that by the first few accesses all the elements brought to the corresponding cache level.
The retention of data in the cache could result in high access rates. However, introduced
contention may push some of the data out of the cache, resulting in a decreased access
rate and necessity of re-fetching the data from the memory or lower cache levels.

Memory Bandwidth: To measure the available memory bandwidth a 2GB array of
data will be accessed with the stride size of 128 and threads equal to the number of
available CPUs. Due to the large size of the array each access will cause an off-core
memory access. Similar to the previous micro-benchmarks, number of accesses will be
considered as an indicator of experienced contention in memory bandwidth(cmem). As
explained earlier, increase in the number of accesses will be an indicator of increase in
the memory bandwidth and decrease in the contention level.

Memory Latency: Micro-benchmark is also devised to profile the latency of system
memory to evaluate its effect on the applications. With this idea in mind, the micro-
benchmark accesses an array of 2GB with a stride size of 128 with only one thread
to do a pointer-chasing. In pointer-chasing, each accessed memory location will con-
tain the address of next memory location which should be accessed. One thread have
been considered since theoretically is enough to measure the memory access latency
and prevent inter-thread contention. The number of memory accesses (clatency) will be
considered as an indicator of memory latency. Here, larger latency will result in lower
number of accesses, and vice versa.

Disk IO: To evaluate the IO contention a micro-benchmark is implemented that will
access 256MB of data with 4 threads and page size of 4KB. Four thread have been con-
sidered since its enough to fully utilize the IO bandwidth. The number of IO accesses
will be considered as an indicator of experienced memory contention (cdisk), which
translates to higher access rate for lower contention level. During these operation the
OS data caching will be disable. The 256 MB of data have been considered regrading
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the maximum IO throughput in the specified short period of the time, for faster disks
with larger cache size the data size can be increase to prevent data access from the disk
cache.

3.2 Profiling Duration

When micro-benchmarks are used to probe and profile the resource contention in a
target VM, how closely such profiling information can reflect the actual resource con-
tention that cloud applications may experience will directly depend on the duration of
profiling. Idealistically, longer profiling duration can capture variations of short-time
changes in contention of cloud environment and lead to more accurate performance
prediction, which however, may increase the profiling overhead. On the other hand,
shorter profiling duration can reduce overhead but could lead to loss of the accuracy.
Therefore, there is a trade-off between the prediction accuracy of the considered models
and the profiling duration.

To support fine-grained evaluation regarding to the profiling duration, we have de-
vised the micro-benchmarks to support sub-second executions. Once the profiling du-
ration is determined, the Micro-benchmarks will be executed sequentially right before
a target application to obtain the in-situ resource contention information, where the
profiling output of each micro-benchmark will be a feature used by the considered per-
formance prediction models. The effects of profiling duration of the micro-benchmarks
on the prediction accuracy of the model will be presented in Sec. 3.2.

3.3 Feature Sets

Each micro-benchmark can provide us the contention of a particular resource experi-
enced by the target application. However, not all applications are sensitive to contention
of all resources. Hence, the effects of micro-benchmarks as features on modeling and
prediction accuracy need to be thoroughly evaluated. For instance, a subset of more fea-
tures can be selected with the goal of achieving higher prediction accuracy, or a subset
of fewer features can be selected to reduce the profiling overhead. The combinations of
different features (i.e., micro-benchmarks) and their effects on prediction accuracy of
the considered models have been extensively evaluated, and the results will be reported
in Sec. 4.3.

3.4 Predictive Models and Performance Prediction

In this work, we considered three representative predictive models: 2D-polynomial
with Lasso Regression, Support Vector Regression (SVR) and the feed-forward neu-
ral network (NN) models. The obtain the training data for these models, the devel-
oped micro-benchmarks and a target cloud application are executed sequentially and
repeatedly, where the profiling output of k micro-benchmarks will be used as features
< p1feature, · · · , pkfeature > associated with the measured application performance
(tapp). These information will be provided as the input to a given predictive model
to find the out the model parameters for function f as presented in Equation (1).
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tapp = f(< p1feature, · · · , pkfeature >) (1)

Once the model parameters were obtained for a given model, the function f can then
be used to predict the application performance at run-time by utilizing the in-situ pro-
filed resource contention information with the micro-benchmarks. Note that, the num-
ber and type of inputs for predictive model depends on selected features when building
models, which should be the same for all the models to achieve fair comparison. The
prediction accuracy for the considered predictive models are presented in Sec. 4.3.

4 Evaluations and Discussions

We have performed extensive experiments to evaluate the effects of different micro-
benchmarks on the prediction accuracy for the considered three predictive models. In
this section, we will first present our experimental setups. Then, we show that when the
profiling information of all micro-benchmarks (i.e., all features) with extended profiling
duration were utilized, the predictive models can provide quite accurate performance
prediction. Finally, the effects profiling duration and feature selection (i.e., when dif-
ferent micro-benchmarks were utilized) on the accuracy of predictive models are eval-
uated.

4.1 Experiments Setup

Representative Benchmark Applications: We considered a total of nine benchmark
applications from PARSEC [3], NAS Parallel Benchmarks (NPB) [4] and CloudSuite [13].
It includes canneal, streamcluster, and swaptions with native inputs from PARSEC, ep,
sp and lu with class c input size from NPB, and In-Memory Analytic, Graph Analytic,
and Web Search from CloudSuite. For Graph analytics and Web Search benchmarks
the only default data inputs, and for the In-Memory Analytic the largest data input have
been used. These benchmark applications have been selected to represent a wide range
of cloud applications. PARSEC benchmarks are selected to represent batch processing
jobs, NPB benchmarks as HPC applications and the ones from CloudSuite are selected
to represent business applications. For all the selected benchmarks, sixteen threads were
specified as the execution parameter.

Clouds and VM Configurations: Two different types of clouds have been considered:
a private cloud and the Chameleon cloud. For the private cloud, OpenStack Ocata was
installed on a server with two Intel Xeon E5-2630 processors (for a total of 16 cores)
and 128GB memory. Each VM will utilize 16 vCPUs and 16 GB memory to be able to
run all the specified benchmarks. To introduce resource contention to the system, up to
three background VMs with the same configuration will be lunched. For each randomly
created interference configuration at run-time, 100 data points will be collected and then
the interference configuration will change. This process will repeat for 10 iterations to
collect total of 1000 data points. The interference VMs will be chosen to randomly ex-
ecute CPU, Memory and I/O intensive applications from iBench [10] and FIO [17]. For
Chameleon, which is a scientific public cloud computing infrastructure [8], the VM in-
stance that has the closest configuration as our private cloud experiment is m1.xxxlarge,
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which has 16 vCPU, 32GB of RAM and 160GB HDD drive. For all the experiments,
Ubuntu Server 16.04 as the OS for the VMs has been used.

Data Collection: We considered seven different profiling duration (0.2, 0.4, 0.6, 0.8, 1,
2, and 3 seconds) for each designed micro-benchmark. For a given profiling duration,
all micro-benchmarks will be executed for that amount of time prior to the execution of
the target application. In this way, the profiling information from the micro-benchmarks
can provide us the current contention level experienced by the application performance
executed next. The nine benchmark applications have been executed individually to
collect the required performance data. For each application, 1,000 data points have been
collected, which runs over the course of 2 month on the private cloud and 45 days on
Chameleon.

For each benchmark application, 60% of the collected data points are randomly
selected to train the model, 20% used for validation and model’s hyperparameter opti-
mization, and finally, the remaining 20% have been used for testing.

Model Implementation: The considered predictive models have been implemented by
utilizing the existing open-source libraries. Here, Support Vector Regression (SVR) and
Lasso Regression from scikit-learn version 0.19.2 [29] have been used. The NN model
was implemented using TensorFlow version 1.12 [1]. Due to sensitivity of NN to the
hyper-parameters, hyper-parameter optimization library - HyperOpt version 0.1.1 [16]
- has been employed, where 100 iterations were used to find the best NN structure [12]
for modeling and prediction from the provided search space. The resulting model are
denoted as NN.

4.2 Prediction Accuracy of Predictive Models
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Fig. 1: Prediction errors of different models on the local cloud with all micro-
benchmarks and 3-second profiling duration.

First, by considering all features from the profiling information for all micro-benchmarks
with the longest duration (i.e., 3 seconds) for each micro-benchmark, Figures 1 and 2
give the prediction errors (i.e., reverse of accuracy) of the considered predictive models
in the local and Chameleon clouds, respectively. Here, we can see that, the prediction
errors of all three predictive models for the considered applications are relatively low,
with the average error being under 6% for the local clouds and 10% for the Chameleon
cloud.

The 2-degree polynomial Lasso model usually have lower accuracy due to their
inability to represent more complex relationships between the profiled resource con-
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Fig. 2: Prediction errors of different models on Chameleon with all micro-benchmarks
and 3-second profiling duration.

tention (features) and the execution time (labels) of the applications. On the other hand,
SVR model can be used to model non-polynomial relationships between the features
and labels, which result in smaller prediction errors as shown in the figures. For compar-
ison, the NN model generally achieves slightly better prediction accuracy (i.e., smaller
errors) for the applications running on the local cloud, which has rather high inter-
ference. The average error of the NN model in our private cloud is only 4.5%. On
the Chameleon cloud, the prediction error for the NN model has the average of 9.1%,
which is almost the same as SVR. Given that the expected interference on Chameleon
cloud is rather light, it indicates that SVR can have relatively better performance for
low-interference cloud.

Moreover, for the NN model, the maximum prediction error is only 7.6% (for Web
Search) on the private cloud and 16.6% (for In-Memory Analytic) on the Chameleon
cloud. These results indicate that the profiled information from our designed micro-
benchmarks can indeed provide accurate estimation on the resource contention, and thus
enable the predictive models achieve accurate performance prediction on both local and
public clouds. In what follows, due to space limitation, we will present only the effects
of feature selection and profiling duration on the prediction accuracy of the NN model.
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Fig. 3: Prediction errors of the NN model for different single feature on the private
cloud.

4.3 Feature Selections with Micro-benchmarks

Although using all seven micro-benchmarks as the features can provide high prediction
accuracy, the profiling overhead with all micro-benchmarks could be rather high (that
is, 3 × 7 = 21seconds for each execution of an application). Therefore, it would be
necessary to whether utilizing the profiling data from fewer micro-benchmarks (i.e.,
fewer features) could still allow the predictive models get similar prediction accuracy.
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Fig. 4: Prediction errors of the NN model for different single feature on the Chameleon
cloud.

Intuitively, it is possible for fewer micro-benchmarks to provide necessary resource con-
tention information for accurate models, since not all cloud applications will be affected
by the contention of every resource. For example, a CPU-intensive application is less
likely to be affected by the disk contention. Moreover, although the micro-benchmark
is designed to probe the contention of one resource, it may still be able to detect the
contention at other related resources (as shown later in this section).
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Fig. 5: The execution times of Streamcluster vs. profiled CPU contention on the private
cloud.

To find out what will be the best subset with the smallest number of features, we
have evaluated different variations of the feature sets with one to four features. Figure 3
shows the prediction error of the NN model when only one feature (from one micro-
benchmark) is utilized for the applications on the local cloud. Here, the prediction er-
rors of the NN model with all features being considered are also shown in the figure for
comparison. From the results, we can see that, when only the CPU micro-benchmark’s
profiling is used as the feature, the average prediction error for the NN model is 5.6%,
which was very close to the average error of 4.5% when all features are considered.
However, not all the single-feature set can lead to the same prediction accuracy. In par-
ticular, we can see that, the NN model with the feature from the disk I/O or memory la-
tency micro-benchmarks can result in extremely high prediction errors (more than 50%
for most applications). These high prediction errors suggest that it is crucial to select
the right subset of features from the micro-benchmarks when building the NN model,
especially when reduced number of features are considered. Actually, the considered
applications are not solely disk-intensive or memory-latency-sensitive. Therefore, only
using these two micro-benchmarks could not provide accurate NN models.
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To investigate the underlying reasons of why only using the CPU micro-benchmark
can provide accuracy results, we further examined how the profiling results of the CPU
micro-benchmark fluctuated with the background contending VMs in our private cloud.
Fig. 5a gives the execution times of Streamcluster on the private cloud over the period
of the experiments, along with the CPU micro-benchmark profiling results (Fig. 5b) and
the contending VMs introduced in the background (Fig. 5c). As the results show, the
CPU micro-benchmark’s profiling results fluctuated along with the background VMs,
even when the background VMs included only memory- and disk-contending VMs.
These results showed the the CPU micro-benchmarks could also probe the contention
at the memory and disk I/O resources, which allows it to provide relatively accurate
models by itself. Further analysis showed that, although CPU micro-benchmark was
only designed to probe CPU contention, its underlying VM also requires memory and
disk to operate. Therefore, the VM that executed the CPU micro-benchmark was also
affected by the memory and disk contention, where the profiling data from the CPU
micro-benchmark includes contention information for the memory and disks. Note that,
when all-features from all micro-benchmarks are utilized, the NN model delivers the
best prediction accuracy (i.e., the lowest errors), which indicates that including the pro-
filing information of the disk I/O and memory is still valuable compared to relying on
the CPU micro-benchmark as an indirect indicator of the contention at the memory and
disk. Similar results have been observed on the Chameleon cloud and were omitted due
to lack of space.

Feature(s) Micro-benchmarks Error
1 CPU 5.6%
2 CPU - Cache 5.3%
3 CPU - Cache - IO 4.8%
4 CPU - Cache - IO - Mem 5.1%
5 All 4.5%

Feature(s) Micro-benchmarks Error
1 CPU 11.5%
2 Mem - IO 9.6%
3 CPU - Mem - IO 9.0%
4 CPU - Mem - IO - Latency 8.6%
5 All 9.1%

a. The local cloud. b. The Chameleon cloud.

Table 1: The effects of different number of features on prediction errors of the NN
model.

When the features from the profiling information of other micro-benchmarks were
included with the CPU feature, TABLE 1 show the average prediction errors of the
NN model on the local and Chameleon clouds, respectively. First, from TABLE 1a,
when the number of features increases from 1 to 4 (with the selected features as shown
in the table), the average prediction errors can be reduced from 5.6% to 5.1%. Sim-
ilar results can be seen in TABLE 1b for the Chameleon cloud. The error reduction
shows that, although CPU micro-benchmark could provide some indirect profiling in-
formation regarding to the contention of other resources, including the features from
the direct profiling of these resources with their respective micro-benchmarks can be
more accurate. Nonetheless, using the profiling data from more resources increases the
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Fig. 6: Prediction errors of NN with different profiling duration on our private cloud.
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Fig. 7: Prediction errors of NN with different profiling duration on the Chameleon
cloud.

profiling overhead, and cloud users should carefully balance this overhead with their
desired prediction accuracy.

4.4 Profiling Duration

Another important factor in profiling overhead is the duration that each micro-benchmark
is executed. In the previous experiments, each micro-benchmark was executed for 3
seconds. Although quite accurate performance prediction can be obtained for the con-
sidered predictive model with such long profiling duration for each micro-benchmark, it
would be necessary to find out what is the smallest duration that can still provide accu-
rate information regarding to resource contention. Here, we have evaluated the predic-
tion accuracy of the NN model when the profiling duration of each micro-benchmark
being 0.2, 0.4, 0.6, 0.8, 1, 2, and 3 seconds, and the results are shown in Figures 6 and 7
for the private and Chameleon clouds, respectively.

For the private cloud, although increasing the profiling duration could reduce the
prediction errors, the additional benefits of using more than 0.4 seconds diminish quickly.
Here, with 3-second profiling duration, the prediction error of the NN model for the con-
sidered application reduces less than 1% compared to the case of 0.4 seconds. However,
further shorten the profiling duration could lead large increases in predication errors for
some applications. On the Chameleon cloud, increasing the profiling duration did not
always reduce the prediction errors, and the differences are rather small. Nonetheless,
as long as the profiling duration was larger than 0.4 seconds, the average prediction er-
rors has the difference of less than 1%. Therefore, for the NN model and the considered
application, we can say that the best profiling duration will be 0.4 seconds.



5 Conclusions

We investigated the usage of micro-benchmarks in profiling based performance pre-
diction for cloud applications in multi-tenant clouds. Several micro-benchmarks have
been designed and developed for the key resources in VMs. Our evaluation results show
that, the micro-benchmarks can accurately profile resource contention in the VM, which
allows accurate performance prediction using different predictive models. The best ac-
curacy can be achieved when all features are used. However the CPU micro-benchmark
can provide acceptable results for performance modeling. Finally, the profiling dura-
tion of 0.4 seconds for the micro-benchmarks can obtain accurate information about
the contention levels of different resources for performance modeling and prediction.
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